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FO-dot

This document describes the FO[·] (aka FO-dot) standard.
FO[·] is First Order logic with various extensions to allow complex knowledge to be expressed in a rigorous and
elaboration-tolerant way. FO[·] facilitates the development of knowledge-intensive applications capable of intelligent
behavior [CVVD22].
The document is meant to be a reference for Knowledge engineers and developers of reasoning engines.
Suggestions for improvements to the document can be made via issues on GitLab.
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CHAPTER

ONE

INTRODUCTION

FO[·] (aka FO-dot) is First Order logic with various extensions to allow complex knowledge to be expressed in a rigorous
and elaboration-tolerant way. FO[·] facilitates the development of knowledge-intensive applications capable of intelligent
behavior [CVVD22]. It uses conventional logic notations as much as possible.
An FO[·] knowledge base (KB) is a set of statements in an application domain. These statements allow distinguishing the
satisfying states of affairs (in which the statements are true), from those in which at least one of them is false.
If the statements in the KB are laws of the physical world, then they are true in any physical situations we could possibly
be in. If they are a transcription of a statutory law, they are true in any legally-acceptable state of affairs. If they are rules
of thumbs about what a good product configuration should be, they are true in states of affairs where the product has all
the desired properties. Hence, the statements in a KB describes what is possible, acceptable or desirable, depending on
the purpose of the KB.
An FO-dot knowledge base is not a program. It cannot be run or executed. It is not even the description of a computational
problem. It is just a “bag of information”, describing certain properties of the application domain.
The information provided in the knowledge base can be used as input to various generic reasoning algorithms: e.g.,
algorithms to determine relevant questions, to compute consequences of new facts, or to explain them. These algorithms
are implemented in reasoning engines, such as IDP-Z3.
These are the current extensions of FO[·]:

Core Multi-sorted logic with finite data structures and equality
Sugar Binary quantification, type inference and other convenient notations
PF Partial functions
ID (Inductive) definitions
Int Integer arithmetic, ranges and dates
Real Real arithmetic
Agg Aggregates: cardinality, sum, min, max
Infinite Quantification over infinite domains (including recursive types)
Concept Quantification over intensional objects

A reasoning engine may support all the extensions, or only a subset. The extensions are loosely coupled, so that each
possible combination defines a different language. The dependencies are shown in the following diagram:
The grammar of all the extensions combined is described in the FO[.] page.
Other extensions are under consideration for inclusion in FO[·]:

Open Quantification over open (aka uninterpreted) types
Causal Causal processes

3
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Cos Transcendental functions
Unit Physical quantities with Unit of Measurements

Note: We use the following nomenclature:
• FO is First Order logic;
• FO[x,y] (with square brackets) is the concrete language with extensions x,y; it is used to write knowledge bases;
• FO(x,y) (with parenthesis) is the theoretical language with extensions x,y; it is used to rigorously specify the essential
semantics of the extension;

• FO[·] (resp. FO(·)) is the concrete (resp. theoretical) language with all the extensions described in this document.

4 Chapter 1. Introduction



CHAPTER

TWO

RATIONALE

What is the knowledge base paradigm and why do we need it ?
Declarative knowledge and its use for solving problems is studied in various fields such as knowledge representation and
reasoning (KRR), computational logic and declarative problem solving paradigms. In the past half a century, an immense
body of scientific knowledge about knowledge and its use for solving problems has been collected in these various domains.
Yet, at this moment no coherent scientific approach to the study of knowledge and its use for problem solving has emerged.
Scientific understanding is scattered over the many fields that study it.
One issue that fragments the study of knowledge and reasoning more than anything else is the type of inference (the type
of reasoning with this knowledge). Historically, the study of logic was seen as the study of reasoning. This inference-
centric view naturally leads to different logics specialized on specific forms of inference. To start with, classical first order
logic (FO) is sometimes defined as the logic of deductive reasoning. But database languages (SQL, Datalog) are logics
for query answering; constraint programming (CP) for constraint solving; answer set programming (ASP) for solving
problems by computing answer sets, temporal logics for model checking, etc. All these logics differ strongly at the level
of the underlying inference mechanism as well as on their syntax and on their scientific terminologies.
But knowledge is independent of the sort of reasoning task. Take the proposition:

During opening hours, at least one secretary is present at the entrance desk.
What task is this proposition to be used for? It could be used as a query to a scheduling database, or as a constraint in a
scheduling problem, or as a property to be verified from a formal specification of a scheduling problem, or as a correctness
property to be proven of a program that computes schedules. The proposition in itself is not bound to any specific problem
or form of inference; yet, in the current state of the art, depending on the problem, the proposition needs to be rephrased
in a logic that supports the required type of inference.
In fact, the proposition has a natural representation as the sentence in first order logic:

∀t : Open(t) ⇒ ∃s : Secretary(s) ∧ at(s, EntranceDesk, t).

Assume we want to solve a scheduling problem satisfying this formula. For a long time a “deductive” logic like FO was
deemed unsuitable for such problem. Often this was blamed on the fact that deduction in FO is undecidable. However,
the more essential reason is that the scheduling problem is simply not a deductive problem and FO theorem provers are
useless. Instead, other declarative paradigms were developed for this such as CP.
The mix up of reasoning with the knowledge representation language is not a desirable situation; neither from a scientific
point of view as it obscures the nature of knowledge and obfuscates it with the form of reasoning, nor from a pragmatical
point of view as it forces the knowledge engineer to rephrase the same proposition in different logics to get different
problems solved. What is needed is a knowledge-oriented scientific approach to study knowledge separated from inference
and problem solving, that allows to study knowledge with scientific methods, that studies how to express knowledge as
naturally and compactly as possible, and that studies the various sorts of problems that can be solved using a knowledge
base. It leads to the idea to build software solutions by expressing domain knowledge in a symbolic knowledge base, and
use it to solve a range of problems and tasks by applying various inference methods. Such a system is what we understand
by the term ``a knowledge base system’’.
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Why start from classical first order logic (FO)?
Classical first order logic dates from the late nineteenth century. Why use that logic? Because it’s language constructs
∧,∨,¬,⇒,⇔,∀,∃ are basic indispensable construct for expressing human knowledge. Moreover, FO’s formal semantics
correctly captures their meaning.
Why extend FO?
Classical language is really a very small language, with only 7 language constructs. It can be improved for knowledge
representation in many different ways.

6 Chapter 2. Rationale



CHAPTER

THREE

NOTATION

The syntax of FO and its extensions is specified using the EBNF notation. In this notation, [ a ] zero or one occurrence
of a, and { a } represents zero, one, or more occurrences of a.
The lexicon lists the tokens of the language. They are specified using Python Regular Expressions. For example, an
identifier satisfies [^\d\W]\w*\b. The regular expressions can be tested online, e.g., using pythex.org.
The tokens satisfying a regular expression are denoted by names in upper case, e.g., ID. Non-terminal symbols are
specified by production rules and are denoted in CamelCase, e.g., TypeInterpretation. In the body of production
rules, terminal symbols are denoted:

• by referring to tokens in the lexicon, e.g., ID;
• using string literals, e.g., 'vocabulary';
• using string interpolation, e.g., 'is_{CONSTRUCTOR}': the terminal symbol is the concatenation of is_ and
a CONSTRUCTOR

Some production rules in FO[Core] are modified or extended in other extensions. To allowmore modularity, non-terminal
strings can be defined by several production rules:

s ← 'A';
s ← 'B' | 'C';

is equivalent to:

s ← 'A' | 'B' | 'C';

The EBNF syntax is not sufficiently precise to define what is a well-formed FO[·] program. So, we complement it with
an informal description of “well-formedness” conditions.

7
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CHAPTER

FOUR

FO[CORE]

This chapter describes the syntax and semantics of the minimal language constructs supported by every member of the
FO[·] language family. Some of the constraints introduced by this minimal language are removed by extensions such as
FO[Infinite].

4.1 Goal

FO[Core] is a typed (aka multi-sorted) first order logic with equality, if-then-else, and special constructs to facilitate the
creation of identifiers and to specify the interpretation of predicates and functions. All types have a finite interpretation,
allowing grounding [WMarienD14]. (This constraint is removed in FO[Int] and FO[Real])

4.2 Knowledge Base

This section describes the high-level structure of a knowledge base.
Lexicon
A Knowledge Base is a text file encoded in UTF-8.
The following character(s) are “white spaces”: they separate tokens, but have no meaning by themselves.

• 0x09 (tab)
• 0x10 (new line)
• 0x13 (line feed)
• 0x32 (space)
• comments: string starting from // till the end of the line (0x10 or 0x13).

Token Pattern Example
ID [^\d\W]\w*\b Color
NAME_V ID V, the name of a vocabulary
NAME_TH ID T, the name of a theory

Syntax

KnowledgeBase ← VocabularyBlock { (VocabularyBlock | TheoryBlock | StructureBlock) };
VocabularyBlock ← 'vocabulary' [NAME_V] '{' { Declaration } '}';
TheoryBlock ← 'theory' [ NAME_TH [: NAME_V] ] '{' { Assertion } '}';
StructureBlock ← 'structure' [ NAME_TH [: NAME_V] ] '{' { Interpretation } '}';

9
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Knowledge Base

Vocabulary block
Block

10 Chapter 4. FO[Core]
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Block

Vocabulary block

Theory block

Structure block

4.2. Knowledge Base 11
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Vocabulary block

NAME_V
'vocabulary' '{' Declaration '}'

12 Chapter 4. FO[Core]
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Theory block

NAME_TH

'theory' '{'

':' NAME_V

'}'

Assertion

4.2. Knowledge Base 13
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Structure block

NAME_TH

'structure' '{'

':' NAME_V

'}'

Interpretation

Well-formedness
1. The Knowledge Base must have at least one vocabulary and one theory block.

14 Chapter 4. FO[Core]
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2. The Knowledge Base may contain other types of block, e.g., procedural blocks to perform reasoning tasks. These
blocks are not part of this standard.

3. If omitted, NAME_V (resp. NAME_TH) is assumed to be the string V (resp. T).
4. The NAME_V in a theory (or structure) block must be the same as the NAME_V of a previous vocabulary block.
5. When the Knowledge Base has several vocabulary (resp. theory or structure) blocks, two vocabulary (resp. theory

or structure) blocks cannot have the same NAME_V (resp. NAME_TH).
Semantics

1. A state of affairs is a static “mental world” that can be communicated by a set of descriptive sentences in natural
language (e.g., in English). (A state of affairs is similar to a mental model in cognitive science [JL08])

2. A knowledge base is a formal description of all the possible (or desirable, or acceptable) states of affairs in a problem
domain.

3. A vocabulary declares the symbols denoting important concepts in a problem domain. Each symbol has an informal
meaning in natural language in the problem domain. There are 3 types of symbols: type, function and predicate
symbols.

4. A particular state of affairs is described by giving a total interpretation to every symbol. The set of these interpre-
tations is a total structure. A structure is an abstraction of a state of affairs.

5. A theory (over a vocabulary) is a set of assertions that are true in every model, i.e., in every structure that are
possible (or desirable, or acceptable). A structure in which all assertions are true is a model of the theory.

6. Many reasoning tasks involve only one vocabulary and theory, but some reasoning tasks, such as “determine if 2
theories are equivalent” require more.

7. A structure block is a special kind of theory blocks that only contains interpretations of types and symbols. They
typically contain observations about a state of affairs.

Example

vocabulary {
// here comes the declaration of types and symbols

}

theory {
// here comes the definitions and assertions

}

structure {
// here comes the interpretation of some symbols

}

4.3 Type declaration

This section describes how a type is declared in the vocabulary.
Lexicon

4.3. Type declaration 15
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Token Pattern Example
ACCESSOR ID

BOOL either � or Bool

CONSTRUCTOR ID

NAME_T ID

NAME_I ID or '[^']*' ‘John Doe’

Syntax

Declaration ← 'type' NAME_T [':=' TypeInterpretation] ;
TypeInterpretation ← '{' NAME_I { ',' NAME_I } '}';
TypeInterpretation ← 'constructed' 'from'

'{' ConstructorDeclaration { ',' ConstructorDeclaration } '}';
ConstructorDeclaration ← NAME_I;
ConstructorDeclaration ← CONSTRUCTOR '(' [ACCESSOR ':' ] Type

{',' [ACCESSOR ':' ] Type} ')';
Type ← NAME_T | BOOL;

16 Chapter 4. FO[Core]
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Declaration

NAME_T'type'
':=' TypeInterpretation

4.3. Type declaration 17
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TypeInterpretation

'{' NAME_I

'}'

','

'constructed' 'from' '{' ConstructorDeclaration

'}'

','

18 Chapter 4. FO[Core]
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ConstructorDeclaration

NAME_I

CONSTRUCTOR '(' ACCESSOR ','

':'
Type

')'

4.3. Type declaration 19
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Type

NAME_T

BOOL

Well-formedness
1. A NAME_T (resp. NAME_I, CONSTRUCTOR, ACCESSOR) can be declared only once. A NAME_T cannot conflict

20 Chapter 4. FO[Core]
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with another Type (e.g., Bool). A NAME_I cannot conflict with another Identifier.
2. The 4 sets of Type, Identifier, CONSTRUCTOR and ACCESSOR strings must be disjoint.
3. Constructors are not recursive: NAME_T occurring as argument of a CONSTRUCTOR must have been previously

declared (relaxed in FO[Infinite]).
Semantics

1. The domain of discourse is a set of objects (aka individuals) in the state of affairs.
2. Types are disjoint subsets of the domain of discourse. The domain of discourse is the union of the types. All types

are finite sets in FO[Core].
3. A type interpretation gives a unique name to each element of the subset (UNA: Unique Name Axiom). Every

element in the subset has a name (DCA: Domain Closure Axiom).
4. A name can be an identifier or a compound identifier.
5. A “direct” type declaration consists of a set of identifiers.
6. A “constructed type” declaration consists of a set of constructor declarations. All the compound identifiers of the

constructed type are obtained by applying each constructor in the declaration to each possible tuple of elements of
their Type arguments (if any).

Examples

type Color := {red, blue, green}
type RGB := constructed from {RGB(Bool, Bool, Bool)}

red, blue and green are the 3 different Colors. There are only 3 Colors. RGB(true, false, false) is
an element of type RGB. This type has 22/722/72 = 8 elements.

4.4 Function and Predicate declaration

This section describes how functions and predicates are declared in the vocabulary.
Lexicon

Token Pattern Example
ANNOT \[[^\]]*\] [This is an annotation]
NAME_S ID

TIMES *|�

TO ->|→

Syntax

Declaration ← SymbolDecl;
SymbolDecl ← { ANNOT } NAME_S { ',' NAME_S } ':' Signature;

Signature ← '(' [ Type { TIMES Type } ] ')' TO Type;
Signature ← Type { TIMES Type } TO Type;

4.4. Function and Predicate declaration 21
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SymbolDecl

ANNOT

NAME_S ','

':' Signature

22 Chapter 4. FO[Core]
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Signature

'(' ')'

Type

TO

TIMES

Type

Type TIMES

Well-formedness
1. A NAME_S can be declared only once. It cannot conflict with another (built-in) symbol (such as abs in FO[Int]).

4.4. Function and Predicate declaration 23
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2. A NAME_T cannot occur in a Signature before it has been declared.
3. The 5 sets of Type, Symbol, Identifier, CONSTRUCTOR and ACCESSOR strings must be disjoint.

Semantics
1. This Declaration declares one (or more) function symbol and its type signature. The Types before TO specify the

domain of the function; the Type after TO specify its range.
2. A function whose range is BOOL is also called a predicate.
3. Annotations do not have logic meaning, but can be parsed by a reasoning engine. They may be used to, e.g., specify

the informal semantics of a symbol, for display to a user. Their use is not specified in this standard.
Examples

convex, equilateral : () → �
colorOf: Country → Color

[edge of a graph]
edge : Node � Node → Bool

4.5 Import

This section declares how declarations can be imported from a vocabulary in another.
Syntax

Declaration ← 'import' NAME_V;

24 Chapter 4. FO[Core]
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Declaration

NAME_V'import'

Well-formedness
1. vocabulary NAME_V must have been declared previously in the knowledge base.

4.5. Import 25
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Semantics
1. the declarations in the vocabulary named NAME_V are added to the vocabulary that contains the import decla-

ration.

4.6 Assertions

This section describes how logic statements are added to a theory.
Lexicon

Token Pattern Example
AND &|∧

EQUIVALENCE <=>|⇔

IMPLICATION =>|⇒

IN in|∈

OR \||∨

QUANTOR [∀!∃?]

R_IMPLICATION <=|⇐

UNARY ~|¬

VARIABLE ID

Syntax

Assertion ← Expression '.';
Expression ← [ { ANNOT } QUANTOR Quantee {',' Quantee} ':' ] RImplication;

Quantee ← VARIABLE {',' VARIABLE} IN Type;
RImplication ← Equivalence [R_IMPLICATION Equivalence];
Equivalence ← Implication [EQUIVALENCE Implication];
Implication ← Disjunction [IMPLICATION Disjunction];
Disjunction ← Conjunction {OR Conjunction};
Conjunction ← Unary {AND Unary};
Unary ← { UNARY } Base;

Base ← 'if' Expression 'then' Expression 'else' Expression;
Base ← { ANNOT } QUANTOR Quantee {',' Quantee} ':' RImplication;
Base ← Symbol '(' [Expression {',' Expression}] ')';
Base ← Identifier | VARIABLE;
Base ← { ANNOT } '(' Expression ')';

Identifier ← 'true' | 'false' | NAME_I;
Symbol ← NAME_S;
Symbol ← CONSTRUCTOR | ACCESSOR | 'is_{CONSTRUCTOR}';

Here, 'is_{CONSTRUCTOR}' represents any string constructed from 'is_' and a CONSTRUCTOR, e.g., is_RGB.

26 Chapter 4. FO[Core]
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Expression

QUANTOR

ANNOT

Quantee

','

':'
RImplication

4.6. Assertions 27
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Quantee

','
VARIABLE

VARIABLE
IN Type

28 Chapter 4. FO[Core]
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RImplication

Equivalence
R_IMPLICATION Equivalence

4.6. Assertions 29
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Equivalence

Implication
EQUIVALENCE Implication

30 Chapter 4. FO[Core]
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Implication

Disjunction
IMPLICATION Disjunction

4.6. Assertions 31
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Disjunction

Conjunction
OR Conjunction

32 Chapter 4. FO[Core]
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Conjunction

Unary
AND Unary

4.6. Assertions 33
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Unary

UNARY

Base

34 Chapter 4. FO[Core]
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Base

'if' Expression 'then' Expression 'else' Expression

QUANTOR

ANNOT

Quantee

','

':' Expression

Symbol '(' ')'

Expression ','

Identifier

VARIABLE

'('
ANNOT

Expression ')'

Well-formedness
1. Each NAME_T, NAME_S strings must have been declared in the vocabulary. Each NAME_I, CONSTRUCTOR and

4.6. Assertions 35
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ACCESSOR must have been declared before occurring in a Base.
2. Each expression has a type based on the declarations in the vocabulary. An assertion must be a boolean expression.

The elements of an expressionmust have the appropriate types, as specified in the symbol declarations or as required
by the built-in connectives.

3. Each variable must occur in the scope of a quantifier that declares it.
Semantics

1. The expressions above have their usual mathematical / logic meaning. (See also the semantics of FO(Core) below)
2. The production rules above define the precedence of the operators.
3. An is_{CONSTRUCTOR} string denotes a unary predicate that says whether the argument was constructed with

CONSTRUCTOR.
4. When ACCESSOR is the name of the n-th argument of CONSTRUCTOR according to its declaration, it denotes a

function that takes an object O created by CONSTRUCTOR, and returns the n-th argument that has been applied
to the constructor to construct O. The occurrences of ACCESSOR in an expression must be properly guarded to
ensure it is applied to appropriate arguments.

Examples
In ∀x,y ∈ T: p(x,y) ∨ f(f(x))=y., x and y are variables of type T.
Assuming type Color := {RGB{red: Bool, green: Bool, blue: Bool}}, is_RGB(RGB(true,
false, false)) is true and red(RGB(true, false, false)) is true.

4.7 Symbol Interpretation

This section describes how the interpretation of a function or predicate is added to a theory or structure.
Syntax

Assertion ← Interpretation;
Interpretation ← NAME_T ':=' TypeInterpretation '.';
Interpretation ← NAME_S ':=' Value '.';
Interpretation ← NAME_S ':=' SymbolInterpretation '.';

Value ← Identifier;
Value ← CONSTRUCTOR [ '(' Value {',' Value } ')';
SymbolInterpretation ← '{' TupleValue { ',' TupleValue } '}';
SymbolInterpretation ← '{' TupleValue TO Value { ',' TupleValue TO Value} '}'␣

↪→[else];
TupleValue ← Value;
TupleValue ← '(' Value { ',' Value } ')';

else ← 'else' Value;

36 Chapter 4. FO[Core]



FO-dot

Interpretation

NAME_T ':=' TypeInterpretation

NAME_S ':='

Value

'{'

Value

','

'}'

TupleValue

TO Value '}'

','

'else' Value

'.'

4.7. Symbol Interpretation 37
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TupleValue

Value

'(' Value

')'

','

38 Chapter 4. FO[Core]
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Value

Identifier

CONSTRUCTOR '(' Value

')'

','

Well-formedness
1. A NAME_T or NAME_S can be interpreted only once.

4.7. Symbol Interpretation 39
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2. All types must be interpreted, in the vocabulary or in a theory/structure.
3. Each NAME_I, CONSTRUCTOR and ACCESSOR must have been declared before occurring in a Value.
4. The interpretation can be a single value only for nullary predicates or functions (i.e., with an arity of 0).
5. The number and type of values in an interpretation must match the type signature of the NAME_S being interpreted.
6. The number and types of values in a compound identifier must match the type signature of the CONSTRUCTOR.
7. The TO element is mandatory in function interpretations, and prohibited in predicate interpretations (relaxed in

FO[Sugar]).
Semantics

1. These assertions define the interpretation of types, predicates and functions.
2. For a type, the assertion has the same semantics as in a type declaration
3. For a predicate, the set of TupleValue is the set of values for which the predicate is true; the predicate is false

for any other TupleValue; for nullary predicate, the unique Value can be true or false.
4. For a function, the assertion maps tuple of arguments to their value. The value after else is the value given to the

function for tuples of arguments that are not in the enumeration. For nullary symbols, the interpretation can be a
unique value.

Examples

Color := {red, blue, green}.
node := {A, B, C}.
colorOf := {A -> red, B -> blue} else green.
edge := {(A,B), (B,B)}.
convex := true.

4.8 FO(Core) abstract language

This section contains the formal theory of the FO(Core) abstract language.
The translation between the abstract language and the concrete language is not provided. However, corresponding concepts
in the abstract and the concrete language are denoted by the same words: this should allow the reader to establish the
correspondence by himself.
T is a set of type-symbols. It contains type-symbol .
A n-signature is a (n+1)-tuple of type-symbols, noted T12/7 . . .2/7Tn→T , where 0 ≤ n. (A 0-signature is noted ()→T )
A vocabulary is a set of (symbol , n-signature) pairs.
A typing function is a function that maps variables to type-symbols. For a given , we define [x : T ] to be the function ′
identical to except that ′(x) = T .
The type of string (over ) given a typing function , noted (, ), is a type-symbol partially defined by induction as follows
(terminal symbols are underlined for clarity):

40 Chapter 4. FO[Core]
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(, ) if
true

false

x (x) x is a variable
(t1,..,tn) T (, T12/7 . . .2/7Tn→T ) ∈ and ∀i ∈ [1, n] : (ti, ) = Ti

∨ (, ) = and (, ) =
¬ (, ) =
∃x∈T : x is a variable and (, [x : T ]) =
t1=t2 (t1, ) = (t2, )
if then t1 else t2 T (, ) = and (t1, ) = T = (t2, )
otherwise undefined

Let ∅ be the typing function with empty domain. We say that is a well-formed formula of type T over if (,∅) = T . A
sentence is a well-formed formula of type .
This table shows how to extend the syntax with convenient notations:

Convenient notation Equivalent formula
∧ ¬(¬∨¬)
⇒ ¬∨
⇐ ∨¬
⇔ (∧)∨(¬∧¬)
∀x∈T : ¬∃x∈T : ¬

A (total) structure over consists of :
• an object domain D containing , the set of booleans;
• a mapping of type-symbols T to disjoint subsets T of D; D is the union of all T ;
• a (total) mapping from symbols with n-signature T12/7 . . .2/7Tn→T to (total) functions from T12/7 . . .2/7Tn to T .

Note: Identifier and CONSTRUCTOR strings are function symbols whose interpretation have the following proper-
ties:

1. All well-formed ground terms of type T built exclusively with them uniquely identify an element of T .
2. Every element of T is uniquely identified by a well-formed ground term of type T built exclusively with them.

We define a variable assignment as a mapping of variables to elements inD. A variable assignment extended so that the
mapping of x is d is denoted [x : d].
The value of formula in (, ), denoted ⟦t⟧I = v, is an element of D partially defined by induction as follows:

4.8. FO(Core) abstract language 41
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⟦⟧I if
true true

false false

x (x) x is a variable in the domain of
(t1,..,tn) (⟦t1⟧I , .., ⟦tn⟧I) (, T12/7 . . .2/7Tn→T ) ∈ and ∀i ∈ [1, n] : ⟦ti⟧I is defined
∨ false ⟦⟧I is defined and false
∨ ⟦⟧I∨⟦⟧I ⟦⟧I and ⟦⟧I are defined
¬ ¬⟦⟧I ⟦⟧I is defined
∃x∈T : ∃d∈T I : ⟦⟧I [x : d] ⟦⟧I [x : d] is defined for every d in T I

t1=t2 ⟦t1⟧I = ⟦t2⟧I ⟦t1⟧I and ⟦t2⟧I are defined
if then t1 else t2 ⟦t1⟧I ⟦⟧I = true and ⟦t1⟧I is defined
if then t1 else t2 ⟦t2⟧I ⟦⟧I = false and ⟦t2⟧I is defined
otherwise undefined

Notice that ∨ and if then t1 else t2 have non-strict semantics.
We say a total structure satisfies sentence iff ⟦⟧I = true for any . This is denoted ⊧. Structures that satisfy are called
models of .

42 Chapter 4. FO[Core]



CHAPTER

FIVE

FO[SUGAR]

5.1 Goal

The goal of FO[Sugar] is to add convenient notations: binary and direct quantifications, variable declaration, and the “in”
operator.
It also supports reasoning with partial interpretation of symbols.

5.2 Binary Quantification and Variable Declaration

Syntax
FO[Sugar] adds these production rules:

Declaration ← VARIABLE IN ( Type | Symbol );
Quantee ← VARIABLE {',' VARIABLE} [ IN Symbol ];
Quantee ← VarTuple {',' VarTuple} IN Symbol;

VarTuple ← '(' VARIABLE { ',' VARIABLE } ')';
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Quantee

VARIABLE
',' VARIABLE

IN SymbolVarTuple
',' VarTuple
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VarTuple

VARIABLE'('
',' VARIABLE

')'

Well-formedness
1. Type must be a declared type.
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2. Symbol must be a declared predicate.
3. Symbol must be a unary predicate when quantifying a VARIABLE, and an n-ary predicate when quantifying a

VarTuple.
4. When IN Symbol is omitted, the type of the variable(s) is inferred from the variable’s declaration (if given), or

from the quantified formula (to make it well-formed; an error is raised otherwise).
5. When quantifying a VarTuple, the number of VARIABLE in VarTuple must match the arity of Symbol.

Semantics
Let’s assume that the type signature of P is T1 � ... � Tn → �.
∃ x1 ∈ P: φ reduces to ∃ x1 ∈ T1: P(x1) ∧ φ (where P is unary). It can also be written ∃ x1: φ. ∃
(x1, ..., xn) ∈ P: φ reduces to ∃ x1 ∈ T1, .., xn ∈ Tn: P(x1, .., xn) ∧ φ.
Similarly,∀ x1 ∈ P: φ reduces to ∀ x1 ∈ T1: P(x1) ⇒ φ (where P is unary). It can also be written ∀ x1:
φ. ∀ (x1, ..., xn) ∈ P: φ reduces to ∀ x1 ∈ T1, .., xn ∈ Tn: P(x1, .., xn) ⇒ φ.

Note: When inferring Symbol is difficult for a human because of the complexity of the quantified formula, it is
recommended to declare the variable, or explicitly state the Symbol in Quantee.

Example
Assuming that the type signature of man is Person → �, ∀ x in man: mortal(x). is equivalent to ∀ x in
Person: man(x) ⇒ mortal(x).

5.3 Direct quantification

Syntax
FO[Sugar] adds these production rules:

Quantee ← VARIABLE {',' VARIABLE} IN '{' Value { ',' Value } '}';
Quantee ← VarTuple {',' VarTuple} IN '{' TupleValue { ',' TupleValue } '}';

Well-formedness
1. The Values must have the same type; this type is the type of the VARIABLEs.
2. The TupleValue must be of the same type; they must not have a TO Value. The VarTuple type is the type

of the TupleValues.
Semantics
∃ x ∈ {1,2,3}: φ(x) reduces to φ(1) ∨ φ(2) ∨ φ(3). ∃ (x,y) ∈ {(a,1),(b,2)}: φ(x,y)
reduces to φ(a,1) ∨ φ(b,2).
∀ x ∈ {1,2,3}: φ(x) reduces to φ(1) ∨ φ(2) ∨ φ(3). ∀ (x,y) ∈ {(a,1),(b,2)}: φ(x,y)
reduces to φ(a,1) ∧ φ(b,2).
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5.4 “in” operator

Syntax
FO[Sugar] adds these production rules:

Unary ← { UNARY } Enum;
Enum ← Base IN '{' Value { ',' Value } '}';

Notice that this extension redefines the syntax of Unary in FO[Core].
Well-formedness
The type of Base must be the same as the type of Value.
Semantics
Base IN { Value1, ..., Valuen } is the same as Base=Value1 ∨ .. ∨ Base=Valuen.

5.5 Partial interpretation of symbols

The goal is to support reasoning with partial interpretations of functions and predicates.
Lexicon

Token Pattern Example
INCLUDE :⊇|:>=

Syntax
FO[Sugar] adds these production rules:

Enum ← NAME_S '(' Expression {',' Expression } ')' 'is' 'enumerated' ;
Interpretation ← NAME_S INCLUDE SymbolInterpretation '.';

Well-formedness
1. NAME_S must be declared in the vocabulary and must be given an Interpretation.
2. The number and types of arguments of NAME_S in Enum must match its type signature.
3. The number and type of values Interpretation must match the type signature of the NAME_S being inter-

preted.
4. An Interpretation using INCLUDE must use a TO element after every tuple of values in its SymbolIn-

terpretation. The SymbolInterpretation does not have to be total over its domain.
Semantics

1. A symbol interpretation given using INCLUDE is a partial interpretation of the symbol: the interpretation of the
symbol is left unspecified for the tuples that are not interpreted.

2. NAME_S(e1, .. , en) is enumerated is true when the Interpretation of NAME_S is total or
when the interpretation of the tuple (e1, .. , en) is specified in the Interpretation of NAME_S. It is
falseotherwise.

Example
The following theory requires that material() has a known maximum temperature.
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Material := {A, B, C}.
maxTemp :⊇ {A→100}. // maxTemp: Material -> Int
maxTemp(material()) is enumerated. // material: () -> Material

material() is thus A in every model.
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SIX

FO[PF]

FO[PF] extends FO[Sugar] to allow the use of partial functions, i.e., n-ary functions that are not totally defined over the
cross-product of their argument types, T1 � ... � Tn.
It introduces syntax to declare subtypes, a subset relation between predicates, the domain and codomain of functions, and
partial Interpretations.

6.1 Subtypes and subsets

This section describes how subtypes and subsets are declared.
Lexicon

Token Pattern Example
SUBSET `<< ⊆`

Syntax
FO[PF] adds these production rules:

Declaration ← 'type' NAME_T [':=' TypeInterpretation] SUBSET NAME_T;

Declaration ← SymbolDecl '(' NAME_S SUBSET name_ST { TIMES name_ST } ')';
name_ST <- type;
name_ST <- NAME_S;

Well-formedness condition
1. (acyclicity) A NAME_T cannot be used after SUBSET before it has been declared as a type symbol. This prevents

loops in the subtype-of relation.
2. (repetition) The NAME_S before SUBSET must be the name of the declared symbol.
3. (arity) A NAME_ST occuring in a cross-product must be either a type or a unary predicate. The number of factor

in the cross-product must be the arity of the declared symbol.
4. (interpretation) A NAME_T must be given an interpretation in a vocabulary, theory or structure block.

Semantics
Consider these declaration
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type T << T1
type T := {..} << T1

p : T1 * .. * Tn -> Bool
p : T1 * .. * Tn -> Bool (p << q)
p : T1 * .. * Tn -> Bool (p << q1 * .. * qn)

The first two declarations say that T is a subtype of T1, i.e., that the interpretation of T is a subset of the interpretation
of T1.
The next 3 declarations say that p has arity n and takes arguments of type T1 * .. * Tn. The fourth declaration says
that p is a subset of q (where q also has type signature T1 * .. * Tn -> Bool). The fifth declaration says that p
is a subset of the cross-product q1 * .. * qn, where the qi are previously-declared unary predicates.
Thanks to the acyclicity of the subtype-of relation, a predicate P always denotes a subset of a cross-product of type(s).
This cross-product is determined by (recursively) looking up the signature of its superset.
Example

vocabulary {
type LivingBeing := { Bob, Alice, Tom, Garfield, Kermit }
type Person := { Bob, Alice, Tom} << LivingBeing
married : LivingBeing → Bool (married << Person)

}

6.2 Domain and codomain

Syntax
FO[PF] adds these production rules:

Declaration ← SymbolDecl '(' 'total' ')';
Declaration ← SymbolDecl '(' domain [ ',' 'codomain' ':' name_ST] ')';
Declaration ← SymbolDecl '(' 'codomain' ':' name_ST ')';
domain <- 'partial'
domain <- 'domain' ':' name_ST { TIMES name_ST }

Well-formedness condition
1. (acyclicity) A name_ST can occur in a domain or codomain only if it has been previously declared.
2. (arity) when the domain is a symbol q, q must have the same type signature as the declared symbol. When the

domain is the cross-product of unary symbols qi, the number of qimust be the arity of the declared symbol, and
each qi must have the type Ti of the declared symbol. The arity of the codomain must be one.

3. (Well-guardedness) Logic formulas in a theory must bewell-guarded to ensure that the value of functions outside of
their domain has no influence on the truth value of the theory. This can be achieved by using binary quantification
and the non-strict (aka asymmetric) interpretation of the logic connectives in FO[Core] (including if.. then.
.else).

4. (For FO[ID]) A definition of fmust define a value in the range of f for all tuples of arguments in the domain of f.
Semantics
Consider these declarations:
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f : T1 * .. * Tn -> T (total)
f : T1 * .. * Tn -> T (domain: p1*..*pn, codomain: q)
f : T1 * .. * Tn -> T (domain: p, codomain: q)
f : T1 * .. * Tn -> T (partial)

where T1,..,Tn are previously declared (sub)types and p, p1,.., pn, q are previously-declared types or pred-
icates.
All declarations say that f takes arguments of type T1 * .. * Tn. The (total) keyword is optional but recom-
mended.

• The first declaration says that f is a total function over T1 * .. * Tn.
• The second declaration says that f is defined over exactly the cross-products of the sets p1*..*pn, and that its image
is a subset of q (T -> Bool).

• The third declaration says that f is defined over exactly p (with type signature T1*..*Tn -> Bool), and that
its image is a subset of q (T -> Bool).

• The fourth declaration says that f is defined over exactly dom_f, where dom_f is an implicitly declared predicate
with type signature T1*..*Tn -> Bool.

Example

vocabulary {
type LivingBeing := { Bob, Alice, Tom, Garfield, Kermit }
type Person := { Bob, ALice, Tom} << LivingBeing
married : LivingBeing → Bool (married << Person)
spouse: LivingBeing → LivingBeing (domain: married, codomain: married)

}

6.3 Interpretations

This section discusses the (possibly partial) interpretation of partial functions.
Syntax
(no change)
Well-formedness condition

1. (Partial predicate) Unlike in FO[Core], the Interpretation of a predicate pmay use the → element, followed
by true or false. When it uses the → element, it must use it for every TupleValue, and it may also use the
else clause.

2. The Value in the Interpretation of a symbol σ must be in the domain and range of σ. The Inter-
pretation of σ must be total over its domain. These conditions are checked at the syntax level when the
Interpretation of the domain and/or range of σ is explicitly and totally given.

Semantics
If the Interpretation of σ is total and has no else part, it also specifies the interpretation of the domain of σ.
Example

vocabulary {
type LivingBeing:= { Bob, Alice, Tom, Garfield, Kermit }
person : LivingBeing → Bool

(continues on next page)
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(continued from previous page)
married : LivingBeing → Bool (married << Person)
spouse: LivingBeing → LivingBeing (domain: married, codomain: married)

}
theory {

person := { Alice, Bob, Tom }
spouse := { Alice → Bob; Bob → Alice }

}

This theory implies that Alice and Bob are the only married persons.
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SEVEN

FO[ID]

7.1 Goal

The goal of FO[ID] is to allow defining concepts in terms of other concepts, in a modular way. The definition can be
inductive. ID stands for “Inductive Definition”.

7.2 Lexicon

Token Pattern Example
DEF <-|←

FORALL [∀!]

7.3 Syntax

FO[ID] adds these production rules:

Assertion ← { ANNOT } '{' Rule { Rule } '}';
Rule ← { ANNOT } { FORALL Quantee {',' Quantee} ':' }

Head [ DEF Expression ] '.';
Head ← NAME_S '(' [ Expression {',' Expression } ] ')'

[ '=' SumMinus ];
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Assertion

ANNOT
'{' Rule '.' '}'

54 Chapter 7. FO[ID]



FO-dot

Rule

ANNOT

FORALL Quantee
',' Quantee

':'

Head

DEF Expression
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Head

'('NAME_S ')'
Expression

',' Expression '=' SumMinus
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7.4 Well-formedness

1. The Variable occurring in a rule must be in the scope of a quantifier that declares it. The scope of the quantifiers
in the head of a Rule is the whole rule.

2. NAME_S must have been declared in the vocabulary.
3. The number and types of Expression applied to NAME_S must match its type signature.
4. The = sign must occur in rule where NAME_S has been declared as a non-boolean function. The type of the

Expression after = must be the same as the type of NAME_S.
5. The Expression after DEF must be boolean.

7.5 Semantics

An inductive definition specifies a unique interpretation for a predicate (or function) symbol, given the interpretation of
its parameters. The parameters of a definition are the symbols that occur in it (by contrast, the tuple of arguments are the
values applied to its symbol).
The semantics of a predicate definition is the well-founded semantics [Den00]. When the predicate is well-defined, i.e.,
the definition is not a paradox like { p() ← ¬p(). }, the definition can be seen as the description of a constructive
process. The construction process starts with an empty relation, i.e., the predicate is false for any tuple of values.
Whenever the body of a rule (i.e. the Expression after DEF) is true, the tuple of values in the header is added to
the relation. The process continues until a fix point is reached, i.e., no tuple of values can be added to the relation.
The construction process is similar for a function. The process starts with the function being undefined for every tuple of
arguments. Whenever the body of a rule is true, the mapping of tuple of arguments to a value described in the header
is added to the function interpretation. The process continues until a fix point is reached, i.e., no mapping can be added
to the function interpretation.
The knowledge engineer should make sure that a defined function is defined over its whole domain, i.e., that the rules are
such that the function is defined for every tuple of arguments in its domain, and for any interpretation of the parameters
of the definition. He should also make sure that the rules of a function definition are not conflicting. Conflicting rules
specify 2 different values for the same tuple of arguments. A reasoning engine may help him satisfy these requirements.

7.6 Examples

[Definition of convex]
{ convex() ← [All angles are below 180°]

∀n ∈ Side_Nr: angle(n)<180. }

angle is a parameter of the definition of convex. convex is a nullary predicate: it does not take any argument.
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7.7 FO(ID) abstract language

The formal semantics of FO(ID) is described in [Den00]. FO(ID) can be reduced to FO by a process described in [PT05].
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EIGHT

FO[INT]

The goal of FO[Int] is to allow expressing knowledge about integer quantities using the 4 arithmetic operators and com-
parisons. It extends FO[PF].
It also allows creating and using types containing a range of elements, and the comparison of dates, e.g., to determine the
applicability of a law..

8.1 Integer arithmetic

Lexicon

Token Pattern Example
COMPARISON =<|≤|<|~=|≠|=|>|≥|>=

INT Int|ℤ

INTEGER [+-]?\d+ -123
MULT_DIV �|\*|\/|%

POWER \^

SUM_MINUS +|-

UNARY -|~|¬

Note that this extension extends the pattern of UNARY in FO[Core].
Syntax
FO[Int] adds these production rules:

Type ← INT;

Conjunction ← Comparison {AND Comparison};
Comparison ← { ANNOT }

SumMinus {COMPARISON SumMinus};
SumMinus ← MultDiv {SUM_MINUS MultDiv};
MultDiv ← Power {MULT_DIV Power};
Power ← Unary {POWER Unary};

(continues on next page)
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(continued from previous page)
Identifier ← INTEGER;
Symbol ← 'abs';

Note that this extension replaces the syntax of a Conjunction in FO[Core].

60 Chapter 8. FO[Int]



FO-dot

Conjunction

Comparison
AND Comparison
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Comparison

SumMinus
COMPARISON SumMinus
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SumMinus

MultDiv
SUM_MINUS MultDiv
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MultDiv

Power
MULT_DIV Power
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Power

Unary
POWER Unary

Well-formedness
1. Division must be well-guarded to prevent division by 0 (e.g., if y ≠ 0 then x/y else 1).
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2. Quantification over ℤ is not allowed (relaxed in FO[Infinite]).
Semantics
The arithmetic and comparison operators have their usual meaning.

8.2 Range

Syntax
FO[Int] adds these production rules:

TypeInterpretation ← '{' INTEGER '..' INTEGER '}';
Quantee ← VARIABLE {',' VARIABLE} IN '{' INTEGER '..' INTEGER '}';
Enum ← Base IN '{' INTEGER '..' INTEGER '}';
Identifier ← INTEGER;

Well-formedness
The first INTEGER must be below the second INTEGER.
If the interpretation of a range is not given in the vocabulary block (but in the theory or structure block), it is required to
state that the declared type is a subtype of Int.
Semantics
{1..8} represents the set {1, 2, 3, 4, 5, 6, 7, 8}. The type that it interprets is automatically inferred to
be a subtype of Int.

8.3 Date

Lexicon

Token Pattern Example
DATE #\d{4}-\d{2}-\d{2} #2022-01-01

Syntax
FO[Int] adds these production rules:

Type ← 'Date';
Identifier ← DATE | '#TODAY' ['(' INTEGER, INTEGER, INTEGER ')'];

Well-formedness
1. Dates can occur wherever integers can occur.
2. DATE must be a valid date.
3. Quantification over Date is not allowed (except with the FO[Infinite] extension).

Semantics
Dates are converted to proleptic Gregorian ordinals, where January 1 of year 1 has ordinal 1.
#TODAY(y,m,d) is today’s date shifted by y years, m month and d days. #TODAY(-1, 0, 0) is today last year.
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NINE

FO[REAL]

Goal
The goal of FO[Real] is to allow expressing knowledge about real quantities using the 4 arithmetic operators and com-
parisons.
Lexicon

Token Pattern Example
DIGIT \d

REAL Real|ℝ

REALVAL [+-]?\d+(\.\d*(e[+-]?\d+))? -0.01e-3

Syntax
FO[Real] adds these production rules:

Type ← REAL;
Identifier ← REALVAL;
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Identifier

SUM_MINUS

DIGIT
'.'

DIGIT
'e'

SUM_MINUS
DIGIT

Well-formedness
1. Division must be well-guarded to prevent division by 0 (e.g., if y ≠ 0 then x/y else 1.0).
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2. An arithmetic expression cannot mix integer and real numbers.
3. Quantification over ℝ is not allowed (relaxed in FO[Infinite]).

Semantics
The arithmetic and comparison operators have their usual meaning.
TODO: discuss approximations
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TEN

FO[AGG]

Goal
The goal of FO[Agg] is to allow expressing knowledge about the size (aka cardinality) of a set, as well as aggregates (sum,
min, and max). This extension extends FO[Int] and/or FO[Real].
Lexicon

Token Pattern Example
CARD #|CARD

MIN min|max

SUM sum

Syntax
FO[Agg] adds these production rules:

Base ← CARD '{' Quantee {',' Quantee} [ ':' Expression ] '}';
Base ← MIN '{' Expression '|' Quantee {',' Quantee} [ ':' Expression ] '}';
Base ← SUM '{{' Expression '|' Quantee {',' Quantee} [ ':' Expression ] '}}';
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Base

CARD '{'

Quantee

','

':'

'}'

Expression

MIN '{'
Expression '|'

SUM '{{' '}}'

Well-formedness
1. in CARD{ x∈T : φ }, φ must be a boolean expression.
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2. in MIN{ t | x∈T: φ }, t must be a numeric term, and φ a boolean expression.
3. in SUM{{ t | x∈T: φ }}, t must be a numeric term, and φ a boolean expression.
4. the variables in t and φ must be x or declared in a outer quantification or aggregation.

Semantics
1. #{ x∈T: φ } is the cardinality of the set of elements x in T that make φ true.
2. min{ t | x∈T: φ } is the minimum of t for each x in T such that φ is true.
3. sum{{ t | x∈T: φ }} is the sum of t for each x in T such that φ is true.

Example

c() = #{x∈T: p(x)}.

[The perimeter is the sum of the lengths of the sides]
perimeter() = sum{{ length(n) | n ∈ Side_Nr }}.

FO(Agg) abstract language
The formal semantics of FO(Agg) is described in [DPB01].
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CHAPTER

ELEVEN

FO[INFINITE]

Goal The goal of FO[Infinite] is to allow quantification over infinite domains. This extension extends FO[Int] and/or
FO[Real].
Syntax
FO[Infinite] does not introduce new syntactic rules.
Well-formedness

1. Contrary to FO[Core], constructors can be recursive in FO[Infinite]: a NAME_T occurring as argument of a CON-
STRUCTOR does not have to be previously declared (but it has to be declared). As a result, a constructed type may
have an infinite domain.

2. Contrary to FO[Int], quantification over infinite types (ℤ, ℝ, Date) are allowed in FO[Infinite]. This also applies
to binary quantifications using predicates over infinite domains (FO[Sugar].

Semantics
The formal semantics of a formula quantified over an infinite domain is a conjunction (or disjunction) of infinite length.
Example
The type for “lists of integers” can be declared as follows:

type List := constructed from { nil, cons(ℤ, List)}

cons(1, cons(2, nil)) represents the list [1,2].
Here is a quantification over integers:

∀ x ∈ ℤ: 0 ≤ x^2.
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TWELVE

FO[CONCEPT]

Goal
The goal of FO[Concept] is to allow quantification and aggregates over the concept of an ontology.
Syntax
FO[Concept] adds these production rules:

Type ← 'Concept' '[' Signature ']';
Identifier ← '`{NAME_S}';
Symbol ← '$' '(' Expression ')';

Well-formedness
1. In `{NAME_S}, NAME_S must have been declared as a symbol.
2. The first argument of the $ operator must be a Concept.
3. The number and types of the arguments applied to $(x) must be consistent with the signature of Concept x.
4. The type of $(x)(y1, .. yn) is the range in the signature of Concept x.

Semantic
FO[Concept] extends the domain of discourse with the “intension” of the symbols in the ontology. The intension of a
symbol is the concepts it represents.
Concept[T1 � ... � Tn → T] is the type whose elements are the intensions of the symbol with signature T1
� ... � Tn → T. These elements are denoted by prepending the symbol with a back-tick: `, e.g., `fever is the
concept of symbol fever.
Example
The number of symptoms that a person p has can be defined as

#{s in Concept[Person → �]: symptom(s) ∧ $(s)(p)}

Or, using a binary quantification of FO[Sugar]:

#{s in symtom: $(s)(p)}

FO(Concept) abstract language
The formal semantics of FO(Concept) is described in [CdHD22].
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CHAPTER

THIRTEEN

FO[UNIT] ?

Note: This extension is work-in-progress.

Goal
This extension allows the use of synonyms for types INT and REAL, annotated with units of measurerement (e.g., kg).
It also checks that equations are correct in their use of units of measure.
Lexicon

Token Pattern Example
UNIT [^\W\d_]+(\d+|²|³)? m2, m², Ω

Syntax

TypeInterpretation ← REAL '[' Units ']';
Units ← UNIT {UNIT} ['/' UNIT {UNIT} ];
Units ← '1' '/' UNIT {UNIT};

Identifier ← REALVAL '[' Units ']';

Well-formedness
1. UNIT are one of the 7 base units and the 22 derived units in the International System of Units (SI), with multiplying

prefixes (e.g., M) and power suffix. Another 14 commonly-used non-SI units are also accepted.
2. Only numbers of the same type and comparable unit of measure can be added / substracted / compared. The

multiplying prefixes are handled as usual.
3. The product (resp. division) of numbers of type Real[A] and Real[B] has type Real[A B] (resp. Real[A/

B]).
Semantics
The interpretation of the type is the set of reals, annotated with the unit of measurement.
Example

vocabular {
type Acceleration := Real[m/s²]
a: () -> Acceleration

}
theory T {

a() = 1[cm] / 1[s] / 1[s].
}

In every model of T, a has the value 0.01[m/s²].
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CHAPTER

FOURTEEN

FO[·]

14.1 Lexicon

(Note: The patterns below can be tested online, e.g., using pythex.org)

Token Pattern Example
ACCESSOR ID
AND &|∧
ANNOT \[[^\]]*\] [This is an annotation]
BOOL � or Bool
CARD #|CARD
COMPARISON =<|≤|<|~=|≠|=|>|≥|>=
CONSTRUCTOR ID
DATE #\d{4}-\d{2}-\d{2} #2022-01-01
DEF <-|←
DIGIT \d
EQUIVALENCE <=>|⇔
FORALL ∀|!
ID [^\d\W]\w*\b Color
IMPLICATION =>|⇒
IN in|∈
INCLUDE ⊇|>>
INT Int|ℤ
INTEGER [+-]?\d+ -123
MIN min|max
MULT_DIV �|\*|\/|%
NAME_I ID or '[^']*' ‘John Doe’
NAME_S ID
NAME_T ID
NAME_TH ID
NAME_V ID
OR \||∨
POWER \^
QUANTOR [∀!∃?]
R_IMPLICATION <=|⇐
REAL Real|ℝ
REALVAL [+-]?\d+(\.\d*(e[+-]?\d+))? -0.01e-3
SUBSET `<< ⊆`
SUM sum

continues on next page
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Table 1 – continued from previous page
Token Pattern Example
SUM_MINUS +|-
TIMES * or �
TO -> or →
UNARY -|~|¬
UNIT [^\W\d_]+(\d+|²|³)? m2, m², Ω
VARIABLE ID

14.2 Syntax

KnolwedgeBase ← vocabularyBlock { (VocabularyBlock | TheoryBlock | StructureBlock) };

VocabularyBlock ← 'vocabulary' [NAME_V] '{' { Declaration } '}';
Declaration ← 'type' NAME_T [':=' TypeInterpretation] ;
TypeInterpretation ← '{' NAME_I { ',' NAME_I } '}';
TypeInterpretation ← 'constructed' 'from'

'{' ConstructorDeclaration { ',' ConstructorDeclaration } '}
↪→';

ConstructorDeclaration ← NAME_I;
ConstructorDeclaration ← CONSTRUCTOR '(' [ACCESSOR ':' ] Type

{',' [ACCESSOR ':' ] Type} ')';
Type ← NAME_T | BOOL;
Type ← INT | Date; *FO[Int]
Type ← REAL; *FO[Real]
Type ← 'Concept' '[' Signature ']'; ␣

↪→*FO[Concept]
TypeInterpretation ← '{' INTEGER '..' INTEGER '}'; *FO[Int]
TypeInterpretation ← REAL '[' Units ']'; *FO[Unit]
Units ← UNIT {UNIT} ['/' UNIT {UNIT} ]; *FO[Unit]
Units ← '1' '/' UNIT {UNIT}; *FO[Unit]

Declaration ← 'type' NAME_T [':=' TypeInterpretation] SUBSET NAME_T; *FO[PF]

Declaration ← SymbolDecl;
SymbolDecl ← { ANNOT } NAME_S { ',' NAME_S } ':' Signature;
Signature ← '(' [ Type { TIMES Type } ] ')' TO Type;
Signature ← [ Type { TIMES Type } ] TO Type;

Declaration ← SymbolDecl '(' NAME_S SUBSET name_ST { TIMES name_ST } ')'; *FO[PF]
name_ST <- type; *FO[PF]
name_ST <- NAME_S; *FO[PF]

Declaration ← SymbolDecl '(' 'total' ')'; *FO[PF]
Declaration ← SymbolDecl '(' domain [ ',' 'codomain' ':' name_ST] ')'; *FO[PF]
Declaration ← SymbolDecl '(' 'codomain' ':' name_ST ')'; *FO[PF]
domain <- 'partial' *FO[PF]
domain <- 'domain' ':' name_ST { TIMES name_ST } *FO[PF]

Declaration ← VARIABLE IN ( Type | Symbol ); *FO[Sugar]
Declaration ← 'import' NAME_V;

TheoryBlock ← 'theory' [ NAME_TH [: NAME_V] ] '{' { Assertion } '}';
Assertion ← Interpretation;
Assertion ← { ANNOT } '{' Rule { Rule } '}'; *FO[ID]
Rule ← { ANNOT } { FORALL Quantee {',' Quantee} ':' }

Head [ DEF Expression ] '.'; *FO[ID]
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Head ← NAME_S '(' [ Expression {',' Expression } ] ')'

[ '=' SumMinus ]; *FO[ID]

Assertion ← Expression '.';
Expression ← [ { ANNOT } QUANTOR Quantee {',' Quantee} ':' ] RImplication;

Quantee ← VARIABLE {',' VARIABLE} IN Type;
Quantee ← VARIABLE {',' VARIABLE} [ IN Symbol ]; *FO[Sugar]
Quantee ← VarTuple {',' VarTuple} IN Symbol; *FO[Sugar]

VarTuple ← '(' VARIABLE { ',' VARIABLE } ')'; *FO[Sugar]
Quantee ← VARIABLE {',' VARIABLE} IN '{' Value { ',' Value } '}'; *FO[Sugar]
Quantee ← VarTuple {',' VarTuple} IN

'{' TupleValue { ',' TupleValue } '}'; *FO[Sugar]
Quantee ← VARIABLE {',' VARIABLE} IN '{' INTEGER '..' INTEGER '}'; *FO[Int]
RImplication ← Equivalence [R_IMPLICATION Equivalence];
Equivalence ← Implication [EQUIVALENCE Implication];
Implication ← Disjunction [IMPLICATION Disjunction];
Disjunction ← Conjunction {OR Conjunction};
Conjunction ← Comparison {AND Comparison};
Comparison ← { ANNOT }

SumMinus {COMPARISON SumMinus}; *FO[Int]
SumMinus ← MultDiv {SUM_MINUS MultDiv}; *FO[Int]
MultDiv ← Power {MULT_DIV Power}; *FO[Int]
Power ← Unary {POWER Unary}; *FO[Int]
Unary ← { UNARY } Enum;
Enum ← Base;
Enum ← Base IN '{' Value { ',' Value } '}'; *FO[Sugar]
Enum ← NAME_S '(' Expression {',' Expression } ')'

'is' 'enumerated' ; *FO[Sugar]
Enum ← Base IN '{' INTEGER '..' INTEGER '}'; *FO[Int]

Base ← CARD '{' Quantee {',' Quantee} [ ':' Expression ] '}'; *FO[Agg]
Base ← MIN '{' Expression '|' Quantee {',' Quantee} [ ':' Expression ] '}';

↪→*FO[Agg]
Base ← SUM '{{' Expression '|' Quantee {',' Quantee} [ ':' Expression ] '}}';

↪→*FO[Agg]
Base ← 'if' Expression 'then' Expression 'else' Expression;
Base ← { ANNOT } QUANTOR Quantee {',' Quantee} ':' RImplication;
Base ← Symbol '(' [Expression {',' Expression}] ')';
Base ← Identifier | VARIABLE;
Base ← { ANNOT } '(' Expression ')';

Symbol ← NAME_S;
Symbol ← CONSTRUCTOR | ACCESSOR | 'is_{CONSTRUCTOR}';
Symbol ← 'abs'; *FO[Int]
Symbol ← '$' '(' Expression ')'; ␣

↪→*FO[Concept]

Identifier ← 'true' | 'false' | NAME_I;
Identifier ← INTEGER; *FO[Int]
Identifier ← DATE | '#TODAY' ['(' INTEGER, INTEGER, INTEGER ')']; *FO[Int]
Identifier ← REALVAL; *FO[Real]
Identifier ← '`{NAME_S}'; ␣

↪→*FO[Concept]
Identifier ← REALVAL '[' Units ']'; *FO[Unit]

StructureBlock ← 'structure' [ NAME_TH [: NAME_V] ] '{' { Interpretation } '}';
Interpretation ← NAME_T ':=' TypeInterpretation '.';

(continues on next page)
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Interpretation ← NAME_S ':=' Value '.';
Interpretation ← NAME_S ':=' SymbolInterpretation '.';
Interpretation ← NAME_S INCLUDE SymbolInterpretation '.'; *FO[Sugar]
Value ← Identifier;
Value ← CONSTRUCTOR '(' Value {',' Value } ')';
SymbolInterpretation ← '{' TupleValue { ',' TupleValue } '}';
SymbolInterpretation ← '{' TupleValue TO Value { ',' TupleValue TO Value} '}'␣

↪→[else];
TupleValue ← Value;
TupleValue ← '(' Value { ',' Value } ')';

else ← 'else' Value; *FO[Sugar]
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